The study, titled ‘Radiation Doses Delivered to Babies Born Before 37 Weeks of Gestation’ conducted a study on radiology doses delivered to babies born before 37 weeks of gestation (report published in 2013). The research followed 285 premature babies in NICUs across Belgium, with birth weight as low as 500g, who underwent a combined total of 830 examinations during their hospital stays. Belgian agencies FANC-AFCN (Federal Agency for Nuclear Control) and SCK-CEN (Study Center for Nuclear Energy) measured tube output for every contributing x-ray system in the participating hospitals. For each patient, the number of examinations was extracted from the PACS. The researchers found wide variation in the estimated doses across the hospitals. Causes included variations in exam settings, focus-detector distance and tube output for the different x-ray machines. In addition, there were significant differences in the number of exams each patient underwent.

Another European study from 1997 showed a radiation dose variation factor of 70 across different European healthcare facilities. As premature babies can undergo two to three exams each day, this level of variation is unacceptable. Improving awareness of radiation protection, including through initiatives and campaigns like EuroSafe Imaging, is critical to improving medical radiation safety for all patients.

To pinpoint the optimum balance between radiation dose & image quality

This is the question that Agfa HealthCare is committed to answering. Already, we have developed several tools to support paediatric radiologists – and radiologists in general – in minimising and monitoring patient dose. We have worked together with neonatal and paediatric radiologists to adhere to the ‘as low as reasonably achievable’ (ALARA) principle, and with hospitals in general, to introduce best practices. We understand that if radiation studies can be performed with less radiation, they should be, and we are committed to empowering imaging centres to do so. Our aim is to advance efforts in dose management because it could, ultimately, have an impact on people’s long-term health.

How our company contributes to radiation protection Agfa HealthCare

Towards safer imaging in neonatal & paediatric radiology

Long-term health for fragile patients

The reduction of radiation dose is the biggest challenge facing paediatric radiologists today. This is not only due to children’s higher sensitivity to radiation, but also to the cumulative effect of the radiation. A premature infant, for example, may undergo 30-40 exams over the course of treatment. In neonatal intensive care units (NICUs) diagnostic radiology is key to effective diagnosis and treatment of these fragile patients. Yet, it’s clear that finding ways to reduce radiation exposure for neonatal and paediatric patients makes sense for preserving their long-term health.

MUSICA Image Processing and NX Dose Management Tools

In Agfa HealthCare’s solutions this needle phosphor technology is complemented further by MUSICA, a leading image processing tool for optimising image quality. Adding in the productivity and centralised dose monitoring capabilities of the NX multimodality workstation provides a powerful set of tools for dose management.

The NX workstation includes a colour-coded exposure bar which clearly and visually indicates to the radiologist whether the radiation exposure is ‘acceptable’, ‘slightly out of range’ or ‘significantly out of range’. Exposure can also be tracked and monitored by a technologist for trends, such as upward drift, downward drift or even variations.

High-efficiency needle phosphors for digital radiography

High-efficiency needle phosphors have an important role to play in dose management. In digital radiography (DR), this includes cadmium iodide (CdI). While for computed radiography (CR) we offer cadmium bromide (CdBr2). Their higher x-ray absorption and conversion efficiency offer a higher DQE (detective quantum efficiency) which can lead to higher-quality images and lower dose requirements, improving the optimum balance between dose and image quality.

Exposure index standard helps reduce possibility of exposure errors

Agfa HealthCare was the first company to fully implement the exposure index standard into its modalities. Introduced by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine, this standard method for tracking exposure reduces the possibility for exposure errors, as technologists only need to remember one method for monitoring exposure changes, regardless of which vendor’s technology is being used for image capture. The exposure index has since become an industry-accepted standard by manufacturers around the globe.

Exposure index standard helps reduce possibility of exposure errors

How to pinpoint the optimum balance between radiation dose & image quality

This is the question that Agfa HealthCare is committed to answering. Already, we have developed several tools to support paediatric radiologists – and radiologists in general – in minimising and monitoring patient dose. We have worked together with neonatal and paediatric radiologists to adhere to the ‘as low as reasonably achievable’ (ALARA) principle, and with hospitals in general, to introduce best practices. We understand that if radiation studies can be performed with less radiation, they should be, and we are committed to empowering imaging centres to do so. Our aim is to advance efforts in dose management because it could, ultimately, have an impact on people’s long-term health.

In Agfa HealthCare’s solutions this needle phosphor technology is complemented further by MUSICA, a leading image processing tool for optimising image quality. Adding in the productivity and centralised dose monitoring capabilities of the NX multimodality workstation provides a powerful set of tools for dose management.

The NX workstation includes a colour-coded exposure bar which clearly and visually indicates to the radiologist whether the radiation exposure is ‘acceptable’, ‘slightly out of range’ or ‘significantly out of range’. Exposure can also be tracked and monitored by a technologist for trends, such as upward drift, downward drift or even variations.

High-efficiency needle phosphors for digital radiography

High-efficiency needle phosphors have an important role to play in dose management. In digital radiography (DR), this includes cadmium iodide (CdI). While for computed radiography (CR) we offer cadmium bromide (CdBr2). Their higher x-ray absorption and conversion efficiency offer a higher DQE (detective quantum efficiency) which can lead to higher-quality images and lower dose requirements, improving the optimum balance between dose and image quality.

MUSICA Image Processing and NX Dose Management Tools

In Agfa HealthCare’s solutions this needle phosphor technology is complemented further by MUSICA, a leading image processing tool for optimising image quality. Adding in the productivity and centralised dose monitoring capabilities of the NX multimodality workstation provides a powerful set of tools for dose management.

The NX workstation includes a colour-coded exposure bar which clearly and visually indicates to the radiologist whether the radiation exposure is ‘acceptable’, ‘slightly out of range’ or ‘significantly out of range’. Exposure can also be tracked and monitored by a technologist for trends, such as upward drift, downward drift or even variations.

High-efficiency needle phosphors for digital radiography

High-efficiency needle phosphors have an important role to play in dose management. In digital radiography (DR), this includes cadmium iodide (CdI). While for computed radiography (CR) we offer cadmium bromide (CdBr2). Their higher x-ray absorption and conversion efficiency offer a higher DQE (detective quantum efficiency) which can lead to higher-quality images and lower dose requirements, improving the optimum balance between dose and image quality.

MUSICA Image Processing and NX Dose Management Tools

In Agfa HealthCare’s solutions this needle phosphor technology is complemented further by MUSICA, a leading image processing tool for optimising image quality. Adding in the productivity and centralised dose monitoring capabilities of the NX multimodality workstation provides a powerful set of tools for dose management.

The NX workstation includes a colour-coded exposure bar which clearly and visually indicates to the radiologist whether the radiation exposure is ‘acceptable’, ‘slightly out of range’ or ‘significantly out of range’. Exposure can also be tracked and monitored by a technologist for trends, such as upward drift, downward drift or even variations.